Sustainable Personal Electric Transportation: EVs, PHEVs, and FCVs

Andrew Burke Institute of Transportation Studies University of California-Davis

Renewable Energy Workshop UC Santa Cruz August 1-2, 2011

Outline of the presentation

- **1. Sustainable in personal transportation**
- 2. Battery-powered vehicles EVs
- **3. Plug-in vehicles PHEVs**
- 4. Fuel cell-powered vehicles FCVs
- **5.** Comparisons of the technologies
- **6. Summary and conclusions**

Sustainable Personal Electric Transportation

- Replaces light-duty vehicles used by individuals and families
- Driveline utilizes electric drive components
- Fuels and electricity from renewable sources

Vehicle technologies considered

- Battery-powered EVs
- Plug-in hybrids PHEVs
- Fuel cell-powered FCVs

Summary of the performance characteristics of lithium-ion batteries of various chemistries

Battery	Electrode	Voltage		Resist.		W/kg	W/kg		
Developer/	chemistry	range	Ah	mOhm	Wh/k	90%	Match.	Wgt.	Density
Cell type					g	effic.*	Imped.	(kg)	gm/cm 3
Enerdel	Graphite/ Ni								
HEV	MnO2	4.1-2.5	15	1.4	115	2010	6420	.445	
Enerdel	Graphite/ Ni								
EV/PHEV	MnO2	4.1-2.5	15	2.7	127	1076	3494	.424	
Kokam	Graphite/	4.1-3.2	30	1.5	140	1220	3388	.787	2.4
prismatic	NiCoMnO2								
Saft	Graphite/	4.0-2.5	6.5	3.2	63	1225	3571	.35	2.1
Cylind.	NiCoAl								
GAIA	Graphite/	4.1-2.5	40	.48	96	2063	5446	1.53	3.22
Cylind.	NiCoMnO2		7	3.6	78		3472	.32	
A123	Graphite/Iro	3.6-2.0	2.2	12	90	1393	3857	.07	2.2
Cylind.	n Phosph.								
Altairnano	LiTiO/	2.8-1.5	11	2.2	70	990	2620	.34	1.83
prismatic	NiMnO2								
Altairnano	LiTiO/	2.8-1.5	3.8	1.15	35	2460	6555	.26	1.91
prismatic	NiMnO2								
Quallion	Graphite/	4.2-2.7	1.8	60	144	577	1550	.043	2.6
Cylind.	NiCo								
Quallion	Graphite/	4.2-2.7	2.3	72	170	445	1182	.047	2.8
Cylind.	NiCo	10.00	• •	2.1	4.68	1050	24.45		
EIG	Graphite/	4.2-3.0	20	3.1	165	1278	3147	.41	
prismatic	NiCoMnO2	2.65	1 7	2.5	110	1100	2005	40	
EIG prismatic	Graphite/Iro n Phosph.	3.65-	15	2.5	113	1100	3085	.42	
-	-	2.0							
Panasonic	Ni Metal								
EV	hydride	7.2-5.4	6.5	11.4	46	395	1093	1.04	1.8
prismatic * power densit	v P= Eff *(1		2 (D	P	T 72 / 4	D			

* power density $P = Eff.*(1-Eff.) Voc^2/R$, $P_{match. imped.} = V^2/4R$

Characteristics of lithium-ion batteries using various chemistries

Chemistry Anode/cathode	Cell voltage Max/nom.	Ah/gm Anode/cathode	Energy density Wh/kg	Cycle life (deep)	Thermal stability
Graphite/					fairly
NiCoMnO ₂	4.2/3.6	.36/.18	100-170	2000-3000	stable
Graphite/					fairly
Mn spinel	4.0/3.6	.36/.11	100-120	1000	stable
Graphite/					least
NiCoAlO ₂	4.2/3.6	.36/.18	100-150	2000-3000	stable
Graphite/ iron phosphate	3.65/ 3.25	.36/.16	90-115	>3000	Stable
Lithium titanate/					most
Mn spinel	2.8/2.4	.18/.11	60-75	>5000	stable

Sustainable energy for transportation

Electricity

- **PV**
- Wind
- Solar thermal

Bio-fuels

- Wastes
- Energy crops

Hydrogen

- Renewable electricity
- Bio-materials
- Direct solar conversion

Battery-powered vehicles EVs

Vehicle type	Vehicle test weight kg	Battery Wgt. kg (1)	Battery kWh stored (2)	Electric motor kW (3)	Required Battery pulse power W/kg (4)	Wh/mi from battery (5)	0-60 mph Sec
Cars							
Compact	1373	168	20.2	65	387	202	11.3
Mid-size	1695	208	24.9	102	490	249	8.9
Full	1949	238	28.5	122	513	285	8.6
SUV							
Small	2103	266	31.9	128	481	319	9.6
Mid-size	2243	278	33.3	143	514	333	9.3
Full	2701	317	38.0	160	501	380	9.6

Characteristics of battery electric vehicles (EV) of various types

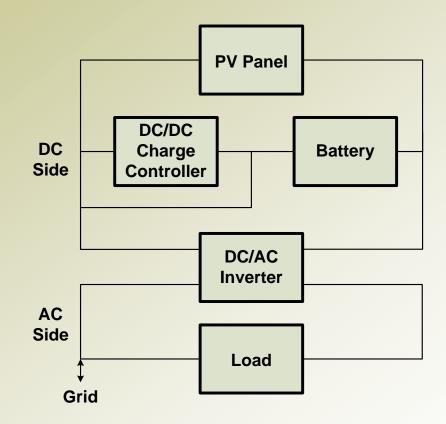
(1) Lithium-ion battery with an energy density of 120 Wh/kg

(2) All vehicles have a range of 100 miles

(3) Peak motor power

(4) Peak pulsed power required from the battery at 90% efficiency

(5) Average energy consumption on the FUDS and FHWAY drive cycles


Energy requirements of EVs

			KWII ICY	uncu	
Vehicle	Wh/mi Woll plug	Range	Range	Range	Daily use
type	Wall-plug	75 mi	100 mi	150 mi	30 mi
Compact					
car	225	17	22	34	7
Mid-size					
car	280	21	28	42	9
Small					
SUV	350	26	35	52	10
Mid-size					
SUV	375	28	38	56	11

kWh required

PV systems with battery energy storage

Plug-in Hybrids

- Use both liquid fuel and wall-plug electricity
- Ratio of two energies depends on the all-electric range and the use pattern of the vehicle

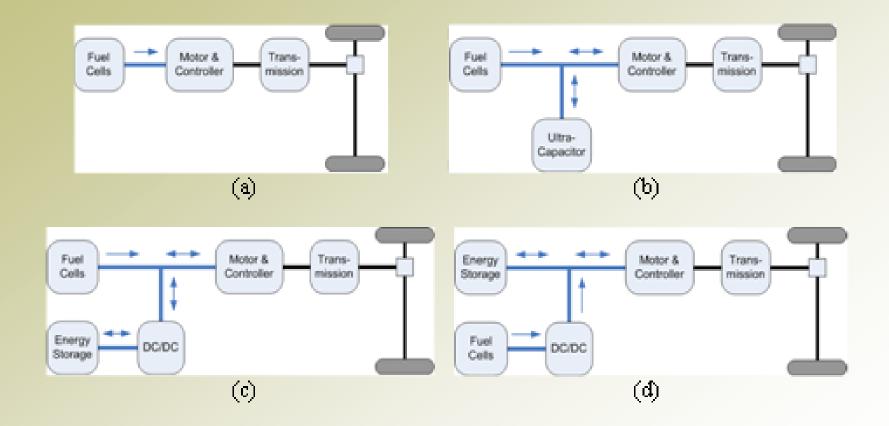
Battery sizing and power density for plug-in hybrid vehicles for various all-electric range and electric motor power (mid-size passenger car)

	Electric	Engine	Battery	Battery		
Range	motor	power	kWh	kWh**	Battery	Battery
miles	kW	kW	*needed	stored	kg***	kW/kg
10	50	100	2.52	3.6	30	1.66
15	55	100	3.78	5.4	45	1.22
20	60	75	5.04	7.2	60	1.0
30	75	60	7.56	10.8	90	.83
40	100	50	10.1	14.4	120	.83

* Vehicle energy useage from the battery: 250 Wh/mi

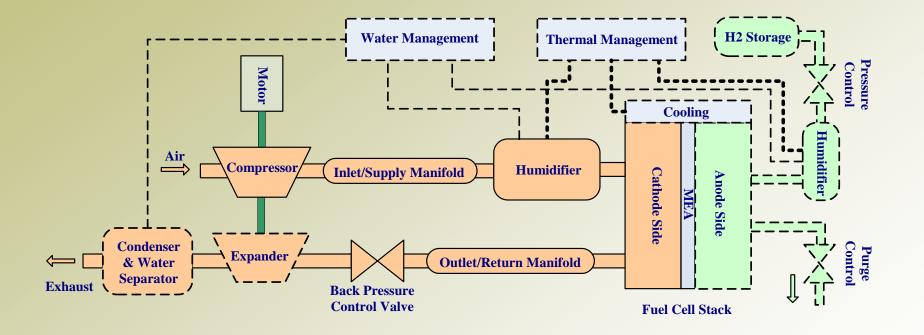
**** Useable state-of-charge for batteries:** 70%, weights shown are for cells only ***** battery energy density 120Wh/kg**

For home PV would want to generate kWh needed to recharge the battery



Fuel cell-powered vehicles (mid-size car)

- Hydrogen fueled high pressure gas storage onboard the vehicle 3-4 kg H2
- PEM fuel cell 75-100 kW
- Small lithium-ion battery or ultracapacitor
- 100-125 kW electric motor
- 75-100 mpg fuel economy equivalent



Powertrain configurations for fuel cell vehicles

Direct hydrogen fuel cell system schematic diagram

Fuel Economy projections for fuel cell-battery vehicles

Compact SUVs

mpg

	2015		20	30	2045	
	UCD	DOE	UCD	DOE	UCD	DOE
UDDS	61.2	62	74.7	73	80.8	82
HWY	60.6	59	73.0	68	78.7	77
US06	40.5		48.8		52.9	
Vehicle Configuration	2015		2030		2045	
CD	.37		.35		.33	
$A_{\rm F} ({\rm m}^2)$	2.9		2.94		2.94	
Fr	.0075		.007		.007	
FC (kW)	102.6		95.4		92.6	
Motor (kW)	129 110			116		
Batter (kWh)	1.15		1.05		1.05	
Vehicle Test Weight	1875		1705		1683	
(kg)						
Elec. Acc Load (W)	250		250		250	

SUMMARY OF COST RESULTS FOR A MIDSIZE PASSENGER CAR IN 2030

Component cost assumptions (changes in retail price of the vehicle):

Added vehicle cost to reduce drag and weight, \$1,600 Advanced engine/transmission, \$45/kW Standard engine/transmission, \$32/kW Electric motor and electronics, \$467 + \$27.6/kW Batteries \$/kg = \$/kWh x Wh/kg /1000 Fuel cell, \$30/kW-\$75/kW

		Bat	tery Input	s		Vehicle	Discounted
Vehicle	Real-World	\$/kWb Wb/kg \$			Energy	Cost	Break-even
Configuration	mpg	\$/kWh	Wh/kg	\$/kg	Saved	Differential	Gas Price
Baseline	27.1						
vehicle 2007							
Adv. ICE	47.8				.43	\$3095	\$3.62/gal ¹
HEV	71.1	1000	70	70	.62	\$3204	\$2.61/gal ¹
		800	70	56		\$3003	\$2.45/gal ¹
		600	70	42		\$2802	\$2.29/gal ¹
PHEV-20	75.3 ⁴	800	100	80	.65	\$6409	\$5.03/gal ¹
							\$3.64/gal ²
		600	100	60		\$5605	\$4.40/gal ¹
							\$3.19/gal ²
		400	100	40		\$4801	\$3.77/gal ¹
							\$2.73/gal ²
PHEV-40	127 ⁵	700	150	105	.79	\$10,228	\$6.58/gal ¹
							\$4.77/gal ²
		500	150	75		\$8218	\$5.29/gal ¹
							\$3.83/gal ²
		300	150	45		\$6208	\$3.99/gal ¹
							\$2.89/gal ²
FCHEV	89.8						
\$75/kW FC		800	70	56	.70	\$7549	\$5.47/gal ¹
							\$3.31/gal ³
\$50/kW FC		800	70	56		\$5549	\$4.02/gal1
							\$2.43/gal ³
\$30/kW FC		800	70	56		\$3949	\$2.86/gal1
							\$1.73/gal ³
Battery electric BEV	Equiv. 176						
Range 100 mi.					.77		10.72 (1)
Ū		\$700	170	119	wallplug	20294	8.09 (3)
							7.90 (1)
		\$500	170	85		14694	6.04 (3)
							5.06 (1)
		\$300	170	47		9094	3.99 (3)

Notes:

1. 5 years and 4% discount rate, 12,000 miles/yr

2. 10 years and 10% discount rate, 12,000 miles/yr

3. 10 years and 6% discount rate, 12,000 miles/yr

Vehicle design	203	E baseline	HEV baseline			
Battery electric *	200710	E Dasenne	Auv. IC	E baseline		senne
5 yr at 4% disc						
 battery cost 	w/o	with	w/o	with	w/o	with
\$/kWh	disc.	disc	disc.	disc	disc.	disc
700	9.57	10.72	14.43	16.16	21.50	24.08
500	7.05	7.90	9.97	11.17	14.91	16.70
300	4.52	5.06	5.50	6.17	8.28	9.27
10 yr at 10% disc	4.32	5.00	5.50	0.17	0.20	9.21
. battery cost	w/o	with	w/o	with	w/o	with
\$/kWh	disc.	disc	disc.	disc	disc.	disc
700	4.99	8.09	7.58	12.28	11.31	18.30
500	3.72	6.04	5.35	8.67	7.99	12.94
300	2.46	3.99	3.12	5.05	4.63	7.50
500	2.40	5.77	5.12	5.05	4.05	7.50
PHEV large battery **						
5 yr at 4% disc						
battery cost	w/o	with	w/o	with	w/o	with
\$/kWh	disc.	disc.	disc.	disc.	disc.	disc.
700	5.6	6.27	8.07	9.04	14.1	15.79
500	4.55	5.10	6.0	6.72	10.45	11.70
300	3.51	3.93	3.9	4.37	6.8	7.62
10 yr at 10% disc						
battery cost	w/o	with	w/o	with	w/o	with
\$/kWh	disc.	disc.	disc.	disc.	disc.	disc.
700	2.94	4.76	4.32	7.00	7.54	12.22
500	2.42	3.92	3.27	5.30	5.71	9.25
300	1.89	3.06	2.22	3.60	3.88	6.29
Fuel cell HEV***						
5 yr at 4% disc						
fuel cell cost	w/o	with	w/o	with	w/o	with
\$/kW	disc.	disc.	disc.	disc.	disc.	disc
75	5.07	5.68	6.48	7.26	9.62	10.77
50	4.16	4.66	4.88	5.47	7.25	8.12
30	3.44	3.85	3.61	4.04	5.36	6.00
10 yr at 10% disc						
fuel cell cost	w/o	with	w/o	with	w/o	with
\$/kW	disc.	disc.	disc.	disc.	disc.	disc.
75	3.06	4.96	4.17	6.76	6.19	10.02
50	2.61	4.23	3.37	5.46	5.00	8.10
30 * alastria asst. 8d	2.25	3.64	2.73	4.42	4.06	6.58

2030 Breakeven fuel price \$/gal gasoline equiv.

* electric cost 8¢/kWh; 12000 miles/yr.
** 65% of miles on electricity, 12,000 miles/yr.
*** fuel cell cost includes hydrogen storage at \$10/kWh, 4 kg H2; \$3.5/kg H2

Summary and conclusions

- Sustainability is feasible using electrified powertrains
- **Battery-powered EVs and distributed PV are the most near-term technologies for sustainability**
- Plug-in vehicles (PHEVs) with all-electric range of 30-40 miles and distributed PV are an alternative
- Battery costs of \$200-300/kWh are needed for market competitiveness with ICE and HEVs
- Fuel cell vehicles are a long term option and offer sustainability if the hydrogen is produced using renewable sources

