

## Maximizing Renewable Energy in the US Electric Grid

Presented at:

#### 2011 Workshop --The Road to a 100% Renewable Energy System

Patricia Hoffman

Assistant Secretary, Office of Electricity Delivery and Energy Reliability

August 1, 2011

## **Why Clean Electricity Generation**

#### Economy-

economic development and growth

#### **Security and Reliability**

diversified generation and storage

#### Environment— Air and water

President Obama's clean energy initiatives to reach:

- 80% of electricity from clean energy sources by 2035
- 1 million electric vehicles on the road by 2015

#### Impacts

| Benefit Category          | Benefit<br>Sub-category     | Specific Outcomes                                                                                         |  |
|---------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------|--|
|                           |                             | Optimized Generator Operation (utility/ratepayer)                                                         |  |
|                           | Improved Asset              | Deferred Generation Capacity Investments (utility/ratepayer)                                              |  |
|                           | Utilization                 | Reduced Ancillary Service Cost (utility/ratepayer)                                                        |  |
|                           |                             | Reduced Congestion Cost (utility/ratepayer)                                                               |  |
|                           |                             | Deferred Transmission Capacity Investments (utility/ratepayer)                                            |  |
| Economic                  | T&D Capital Savings         | Deferred Distribution Capacity Investments (utility/ratepayer)                                            |  |
|                           |                             | Reduced Equipment Failures (utility/ratepayer)                                                            |  |
|                           | T&D O&M Savings             | Reduced Distribution Equipment Maintenance Cost (utility/ratepayer)                                       |  |
|                           |                             | Reduced Distribution Operations Cost (utility/ratepayer)                                                  |  |
|                           |                             | Reduced Meter Reading Cost (utility/ratepayer)                                                            |  |
|                           | Theft Reduction             | Reduced Electricity Theft (utility/ratepayer)                                                             |  |
|                           | Energy Efficiency           | Reduced Electricity Losses (utility/ratepayer)                                                            |  |
|                           | Electricity Cost<br>Savings | Reduced Electricity Cost (consumer)                                                                       |  |
|                           | Power Interruptions         | Reduced Sustained Outages (consumer)                                                                      |  |
| Poliobility (and          |                             | Reduced Major Outages (consumer)                                                                          |  |
| Reliability (and<br>Risk) |                             | Reduced Restoration Cost (utility/ratepayer)                                                              |  |
|                           | Power Quality               | Reduced Momentary Outages (consumer)                                                                      |  |
|                           |                             | Reduced Sags and Swells (consumer)                                                                        |  |
| Environmental             | Air Emissions               | Reduced Carbon Dioxide Emissions (society)                                                                |  |
|                           |                             | Reduced SO <sub><math>\chi</math></sub> , NO <sub><math>\chi</math></sub> , and PM-10 Emissions (society) |  |
| Energy Diversity          | Eporav "Socurity"           | Reduced Oil Usage (society)                                                                               |  |
|                           | Energy Security             | Reduced Wide-scale Blackouts (society)                                                                    |  |
| Economics                 | Market Operations           | Reduced volatility                                                                                        |  |
|                           | Policy - Incentives         | Minimize Electricity Cost (consumer)                                                                      |  |

Adapted from \*Methodological Approach for Estimating the Benefits and Costs of Smart Grid Demonstration Projects, EPRI, January 2010.

## Strategy

- Advance Grid Functionality/flexibility technologies, markets and policies
- Build in security and resiliency

| Systems      | Now                   | Near-term                         | Long-Term                           |  |
|--------------|-----------------------|-----------------------------------|-------------------------------------|--|
| Generation   | Coal, Natural Gas,    | Optimized Generation              | Balance central/distributed         |  |
|              | Nuclear, Central      |                                   |                                     |  |
| Transmission | System monitoring by  | Sensor-based monitoring by        | Automatic switchable network        |  |
|              | based on limited      | operators                         | Expanded Contingency Analysis       |  |
|              | parameters            |                                   |                                     |  |
| Distribution | Utilities perform     | Real-time tools to improve        | Integration of PEVs, real-time      |  |
|              | operations manually   | reliability and system efficiency | operations and dynamic              |  |
|              | (high latency)        |                                   | reconfiguration and protection-     |  |
|              |                       |                                   | Ability to Microgrid                |  |
| Customer     | Some demand-          | All customers being offered a     | Customers are partners with         |  |
|              | response programs,    | variety of technologies and       | utilities in the management of      |  |
|              | especially among      | pricing policies to better        | electricity.                        |  |
|              | commercial and        | establish demand-side             |                                     |  |
|              | industrial customers; | management practices              | Utility business model: neutral     |  |
|              | most residential      |                                   | arbitrator of the grid or an energy |  |
|              | customers on fixed    |                                   | service company?                    |  |
|              | rates                 |                                   |                                     |  |

#### Different Regions of the Country Use Different Fuel Mixes to Generate Electricity



\*Includes generation by agricultural waste, landfill gas recovery, municipal solid waste, wood, geothermal, non-wood waste, wind, and solar.

\*\* Includes generation by tires, batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, and miscellaneous technologies.

Sum of components may not add to 100% due to independent rounding.

Source: U.S. Department of Energy, Energy Information Administration, Power Plant Operations Report (EIA-923); 2009 preliminary generation data.

May 2010

© 2010 by the Edison Electric Institute. All rights reserved.

#### **U.S. Renewable Resources**



#### **Transmission and Clean Energy** *Clean Diversified Generation Fleet*



### **Renewable Electricity Futures Study**

### Renewable Electricity Generation Today: 10% of Total U.S. Electricity Supply



#### Renewable Electricity Generation by 2050: 80% Scenarios



#### **Emerging Technologies**

Potential to displace commercial tech up to 4% each

### **Core 80% Renewable Electricity Scenario**

# Dispatch stack: summer peak in 2050



# Dispatch stack: spring (off-peak) in 2050



#### **Enhanced Flexibility Needed for Electric Grid** with Increasing RE Penetration



Source: NREL

## Simulation, Modeling, and Control

## Integration of forecasting and renewable energy production tools into grid resource planning and operation tools



- Forecasting generation capacity and ramp ranges needed to balance the system (orange bands)
- Incorporating all sources of uncertainty/variability: wind and solar generation and demand
- Example Outcome: predicting generation deficiency above the available range (gray band)
- Tool is installed at the CAISO Control Center to help real-time dispatchers anticipate and address ramping needs.; Planned deployment to other ISOs

## **Energy Storage Technologies**

#### Energy

- Pumped Hydro
- Compressed Air Energy Storage (CAES)
- Batteries
  - Sodium Sulfur (NaS)
  - Flow Batteries
  - Lead Acid, Lead Carbon
  - $_{\circ}$  Lithium lon
  - NiMH
  - $_{\circ}$  NiCad
- Flywheels
- Electrochemical Capacitors



Pumped Hydro (Taum Sauk) 400 MW



Sodium Sulfur Battery 2 MW



Flywheels 1 – 20 MW



#### **Basics: Energy Storage Time Scales**



Figure 11: Total Wind vs. CAISO Load



## **Frequency Regulation**





100kW/15 min Flywheel system Demos CEC / DOE and NYSERDA / DOE

2 x 1MW / 15 min Flywheels in NE-ISO

4 x 1MW / 15min Li-Ion in PJM.

•Potentially twice as effective as gas turbines (Y. Makarov, PNNL, )

•Potentially a 70-80% Reduction in CO2 emission over present methods (Fioravanti, KEMA, 2007)

### **Utility-Scale Storage on the Grid**

Chemical substation: Transformer Load July 19, 2006





PPALACHIAN POWER A unit of American Electric Power

NGK Insulators Ltd S&C Electric Co. DOE / SANDIA







3x2MW/6hr In 2009

#### Concept

Storage defers upgrade; Opens possibility for regional islanding, renewables

First 1MW/6hr in 2007, 3 in 2009 + Duke, First Energy, PG&E

NaS, Flow Batteries, Lead Carbon

3 ARRA Projects -- 53MW

#### **Community Energy Storage**



25 kW / 2 hrs 15 year life time

Backup, Platform for Solar, Utility Dispatchable

# ARRA Project: 20 Li-Ion CES Units on Detroit Edison Grid

## **New Electric Vehicle Load as a Grid Resource**

# Use plug-in hybrid electric vehicles to aid in renewable generation source integration

- Determine balancing requirements for 10 GW of additional wind
  - NWPP oriented
  - Represents 12% RPS requirement
- Determine resource availability
  - Use 2001 NHTS Data for driving habits and population information
  - Use V2GHalf and V2GFull charging



**Balancing Requirements** 

15

15

20

20

4000

<u>≩</u>3000

0002 mpalance<sup>°</sup> 0001 mpalance

0.8

₹0.6

0.4

0.2

5

5

10

10

Time, hours

Time, hours

**Resource Availability** 

### **New Electric Vehicle Load as a Grid Resource**

#### **Completed report with the following key insights**

- All new balancing requirements for 10GW of new wind capacity in NWPP by 2020 could be furnished by electric vehicles
- Solution insensitive to battery size
- Availability of infrastructure during day is essential

#### % of NWPP vehicle fleet to meet new balancing requirements

|                     | Battery Size Scenario |                  |           |                  |  |
|---------------------|-----------------------|------------------|-----------|------------------|--|
| Charging type       | PHEV 33               |                  | BEV 110   |                  |  |
|                     | Home only             | Home and<br>Work | Home only | Home and<br>Work |  |
| V2GHalf             | 180%                  | 13%              | 126%      | 12%              |  |
| V2GHalf and V2GFull | 132%                  | 10%              | 103%      | 8%               |  |
| V2GFull             | 113%                  | 8%               | 94%       | 8%               |  |



#### Automated Demand Response and Energy Efficiency -Saves Capacity and Energy

#### **Electric Load Profile of Auto DR Participants on 8/30/2007**



Source: PG&E

## Hawaii's Wealth of Renewable Potential



## Grid Modeling/Planning

#### A Tool for each timescale of HECO's system



#### Hawaii Case Study

#### **Issues Facing Hawaii Grids**

- Balancing and Frequency Regulation
- Ride-Through
- Anti-Islanding
- Reserve Requirements
- Excess Energy





### **Cyber Security**

| Measure and<br>Assess Security<br>Posture | Develop and<br>Integrate Protective<br>Measures | Detect Intrusion<br>& Implement<br>Response Strategies | Sustain Security<br>Improvements |
|-------------------------------------------|-------------------------------------------------|--------------------------------------------------------|----------------------------------|
|                                           |                                                 |                                                        |                                  |
|                                           |                                                 |                                                        |                                  |
| Energy asset                              | Next-                                           | Control                                                | Implement                        |
| owners are                                | generation                                      | systems                                                | effective                        |
| able to                                   | control                                         | networks will                                          | incentives                       |
| perform fully                             | systems                                         | inform                                                 | through Federal                  |
| automated                                 | components                                      | operator                                               | and state                        |
| security state                            | and                                             | response to                                            | governments to                   |
| monitoring                                | architectures                                   | provide                                                | accelerate                       |
| and control                               | produced with                                   | contingency                                            | investment in                    |
| systems                                   | built-in, end-                                  | and remedial                                           | secure control                   |
| networks with                             | to-end                                          | actions in                                             | system                           |
| real-time                                 | security will                                   | response to                                            | technologies                     |
| remediation                               | replace older                                   | attempted                                              | and practices                    |

#### **Planned R&D to Address High RE Penetration**

#### **OE/EERE collaboration areas on system integration of RE**

- Better forecasting to ensure reserves and manage uncertainty
- Developing comprehensive sub-hourly and real-time models for simulation of grid operations and for planning
- Improving scheduling, dispatch and control systems for managing uncertainty
- Developing coordinated wide-area control approaches and algorithms
- Increasing flexibility of existing grid assets,
  DR, and storage to facilitate RE integration
- Examination of multi-terminal HVDC/AC for offshore wind development
- Adapting foreign RE integration and grid operations experience to the U.S. where prudent
- TECHNOLOGIES- MARKETS- POLICIES

