

Supply-Following Loads: A Berkeley Perspective

Randy H. Katz University of California, Berkeley

100% Renewable Energy Workshop

1 August 2011

LaCal Energy "Spaghetti" Chart

Sources and Loads

Dispatchable Sources

Non-Dispatchable Sources

Oblivious Loads

Aware Loads

Supply-versus Load-Following

Load Duration Curve 100% Most expensive, least efficient energy Peaker Latency involved in bringing capacity on line 90% Capacity 80% Load-following Supply Intermediate 70% Demand Response: Capacity Incentivize reduced loads during 60% % of Peak Demand times of peak demand 50% Demand Side Management: 40% Shift demand to reduce peak loads, e.g., Supply-following Loads 30% Base 20% Capacity 10% Π% 10% 20% 30% 40% 100% 0% 50% 60% 70% 80% 90% % of Time (or probability of exceeding) 4

E.g., Datacenter as a Supply-Following Load

- 1. Degree of Freedom: On-demand + scheduled workloads
- 2. Principle: Power proportionality from nonpower proportional components
- 3. Sustainability: Maximize use of renewable sources

Supply-side Challenge: Wind

 High variability of wind energy is an impediment to its largescale penetration in traditional Grid/Load architectures

Load-side Challenge: Power Proportionality

- Scheduling agility: workload awareness and resource allocation
- Wikipedia interactive workload + HPC batch workload

Energy-Aware System Architecture

Server Efficiencies

Server Class Machines (similar figure for netbook/embedded class nodes)

Effectively Scaling Work Capacity and Power

 $\widetilde{\mathbf{N}}$

Power

400

200

Requests degraded Response rate maintained Energy and cost reduced

 \sim

400

200

0

0

Batch Processing and Slack

Grid energy down, wind energy up

Aware Co-operative Grid

Power Proportional Cluster as a Model System applied to the Smart Grid—now distributed

Smart Buildings

Smart Buildings

- Awareness of Load and Supply
 - Load-Following: match load with managed supply
 - Demand Response: reduce load to meet supply
 - Supply-Following: schedule work to exploit knowledge of available supply—essential for non-dispatchable sources like wind and solar
- Key idea: make information actionable
 - Observe-Analyze-Act
 - Information overlay on cluster, machine room, building-scale "grids"
 - Interface sensors, facilities, clusters, and buildings to information buses at a variety of scales

Conclusions

- Smart Clusters, Smart Buildings, Smart Grids
 - Use less energy
 - Right provisioning for expected + reserve vs. peak
 - Use the energy you need:
 - Power proportionality
 - Use better energy
 - Integrate renewables

Thank You!

