A 100% Renewable Energy Road with Electric Vehicles

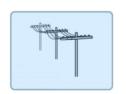
August, 1st 2011

Centre for Electric Technology Department of Electrical Engineering Francesco Marra PhD student Technical University of Denmark

The EDISON Project

Electric Vehicles in a Distributed and Integrated market using Sustainable energy and Open Networks

The EDISON Project (ii)

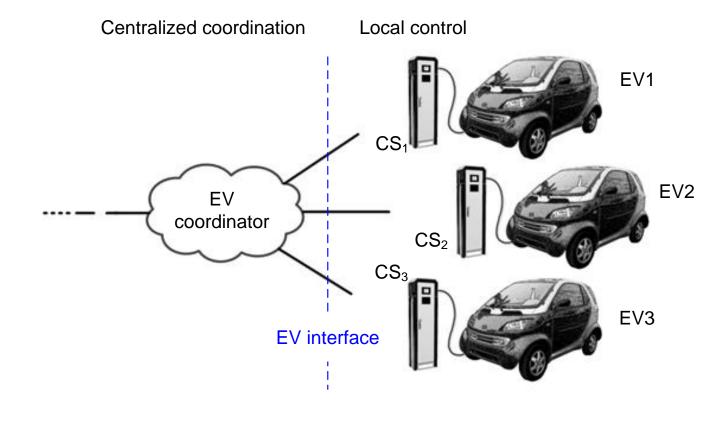

Summary of benefits:

National Level

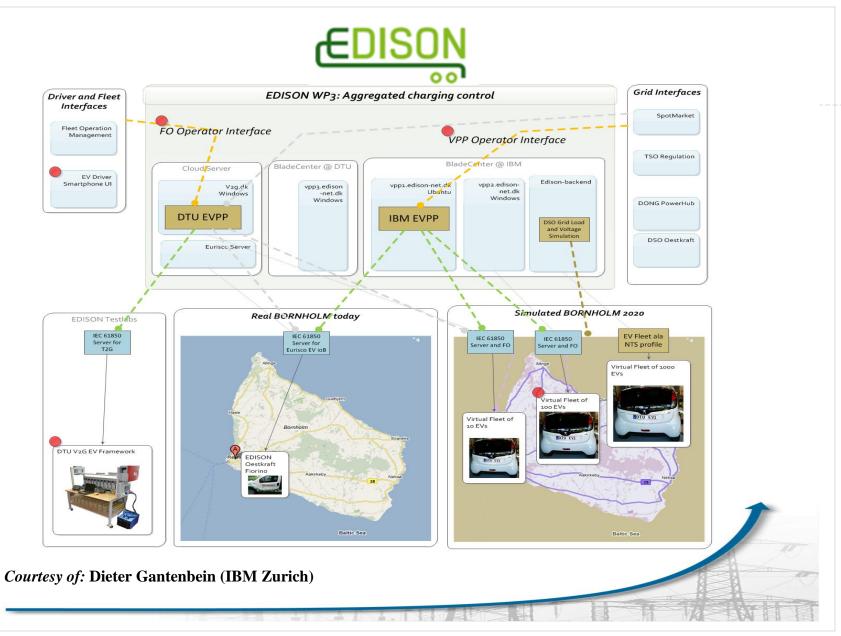
Support an environment-friendly development and increase sustainability

Grid Level

Improve quality of supply and actively integrate distributed energy resources


User Level

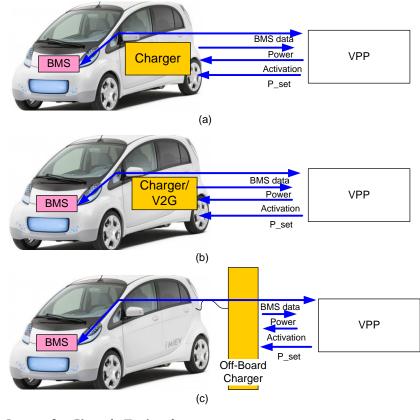
Economic incentive to contribute to CO₂ reduction, grid support

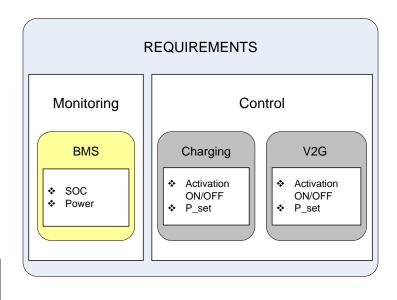


Concept

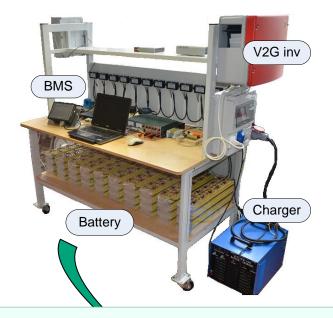
Centre for Electric Technology

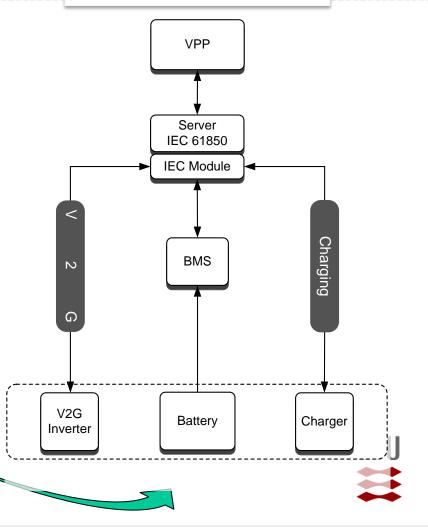
Department of Electrical Engineering


CONNECTIVITY AND CONTROL


Centre for Electric Technology Department of Electrical Engineering

01-08-2011


Electric Vehicle Requirements for Smart Charging and V2G



EV Test-Bed

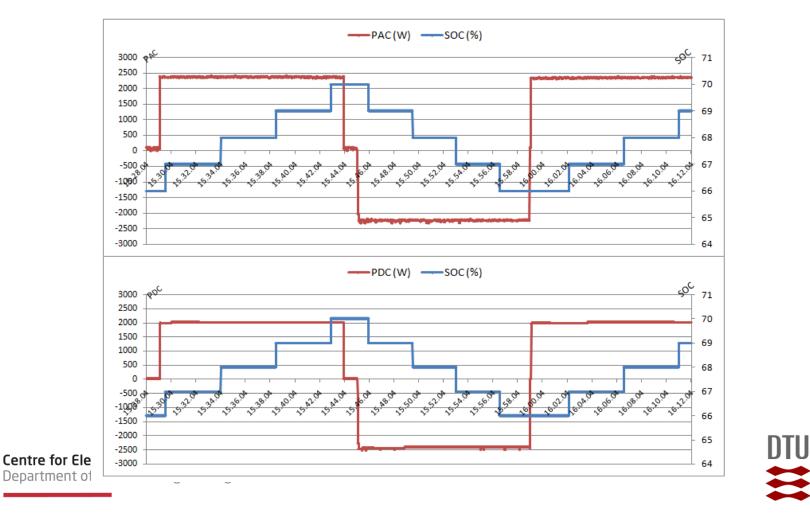
- **Battery pack:** $V_{pack} = 360 \text{ V}, C_n = 40 \text{ Ah},$
- > $E_n = 14.5 \, \text{kWh}$
- Charger: 3-phase, 0-5.5 kW
- V2G inverter: 1-phase, 4 kW
- BMS data: battery voltage, current, power, temperature, SOC, current capacity C, nominal parameters: *E_n*, *C_n*
- On-board EV test bed computer for communication with EV-VPP

Control and Communication architecture

EV – VPP operation

Operator panel

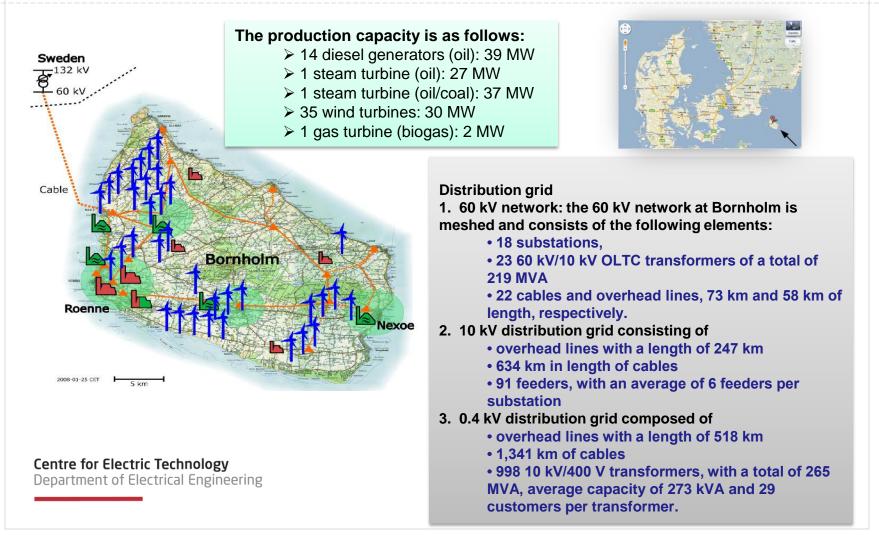
04 Jun 2011 15 DTU T2G (#2421) Now EV Charging Availability Prediction Actual Energy Prices (spot - Price Euro/MWh) 900 600 300 Last known state: 0 State of Charge Charging Profile (load/W), State Of Charge (%) 50% 5000 Status Charging 5000 Charging Schedule (load/W) 5000 Specifications: 5000 **Battery Capacity** 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00 14,00kWh Max Charging Power 5,50kW Bornholmsgat Max Discharging Power Christiansø 4.00kW


Centre for Electric Technology

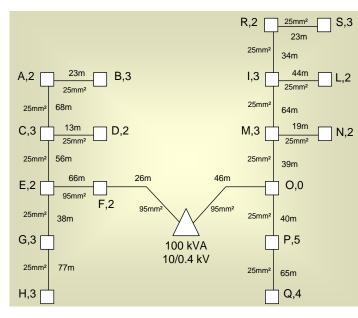
Department of Electrical Engineering

EV – VPP operation

Power measurements during charging/V2G operation


GRID INTEGRATION

Centre for Electric Technology Department of Electrical Engineering



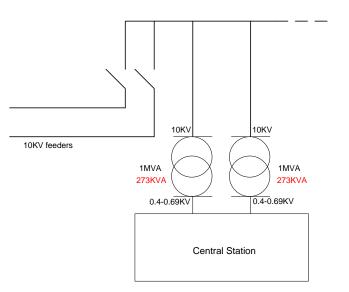
01-08-2011

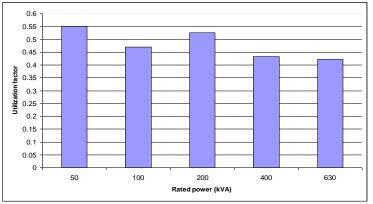
The island of Bornholm (Denmark)

EVs in Distribution Grids

Some distribution grid requirements			
Nominal sec. transf. voltage level	10.4 kV		
Lowest primary voltage	9.6 kV		
Voltage drop (feeders)	+/- 10% (EN 50160)		
Max. cable loading	117%		

SUPPLY VOLTAGE VARIATIONS WITH DIFFERENT SHARE OF EVS OVERNIGHT 3.7kW-CHARGING SCENARIO


Penetration Level [%]	Transf. Loading [%]	Voltage at feeder top [p.u.]	Voltage at feeder terminal [p.u.]
100	177	0.945	0.91
80	142	0.955	0.922
50	108	0.972	0.943
20	65	0.989	0.975
10	44	0.99	0.98
5	33	0.992	0.985


EU Charging Levels			
AC curre	nt AC voltage	Grid connection	Power
10 A	230 V	single phase	2.3 kW
16 A	230 V	single phase	3.7 kW
32 A	230 V	single phase	7.4 kW
16 A	400 V	three-phase	11 kW
32 A	400 V	three-phase	22 kW

Fast Charging Stations planning

Bornholm statistics	
Nr. 10/0.4 kV sub-stations	981
Nr. of 10/0.4 kV sec. substations (average for each municipality)	65
Average capacity of each 10/0.4 KVA sec. substation in Rønne	273 kVA
Estimated nr. of cars in Rønne (main municipality)	5400

Transfer Options	# EVs (Rønne)	
(kVA)	FC 120kW	FC 300kW
50	0	0
100	0	0
200	1	0
400	3	1
630	5	1

Conclusions

- RES, solar and wind, should be in a closed loop with EVs. This can increase sustainability.
- From the EDISON project it comes out that controlling EVs turns out beneficial for both achieving the EU targets and for improving the operation of the grid.
- The combination of charging infrastructures and ICT solutions (VPP) is needed to "synchronize" renewable generations with EVs.
- For the coming 10 years, relatively low share of EVs will be integrated (5-10%), no need for grid reinforcement, especially if smart charging is used.
- Fast charging is another option. Its sustainability depends on whether it is used as a range extender or as a standard charging method. It requires local grid assessment prior installation.

THANK YOU!

